RNase YI* and RNA structure studies.
نویسندگان
چکیده
The enzymology of RNase YI*, a recently discovered endoribonuclease from yeast, was studied and compared to other endonucleases for detection of single-strand regions and base pair mismatches in RNA. Its value for RNA structure analyses was assessed with Escherichia coli 5S rRNA as a model substrate. The generally accepted structure of the 5S rRNA is based on thermodynamic energy considerations as well as structures conserved in regions of the molecule during evolution. S1 and mung bean nucleases gave similar results with very marked preference only for the longest single-stranded region in the model. RNase YI* was much more discriminating for detecting unpaired nucleotides as well as short single-strand regions and predicted the generally accepted 5S rRNA structure. Preliminary experiments also indicated that RNase YI* was more sensitive than RNase I for detecting single or multiple base pair mismatches in an RNA-DNA hybrid.
منابع مشابه
Crystal structure of human polynucleotide phosphorylase: insights into its domain function in RNA binding and degradation
Human polynucleotide phosphorylase (hPNPase) is a 3'-to-5' exoribonuclease that degrades specific mRNA and miRNA, and imports RNA into mitochondria, and thus regulates diverse physiological processes, including cellular senescence and homeostasis. However, the RNA-processing mechanism by hPNPase, particularly how RNA is bound via its various domains, remains obscure. Here, we report the crystal...
متن کاملComparative structure analysis of vertebrate ribonuclease P RNA.
Ribonuclease P cleaves 5'-precursor sequences from pre-tRNAs. All cellular RNase P holoenzymes contain homologous RNA elements; the eucaryal RNase P RNA, in contrast to the bacterial RNA, is catalytically inactive in the absence of the protein component(s). To understand the function of eucaryal RNase P RNA, knowledge of its structure is needed. Considerable effort has been devoted to comparati...
متن کاملHow an exonuclease decides where to stop in trimming of nucleic acids: crystal structures of RNase T–product complexes
Exonucleases are key enzymes in the maintenance of genome stability, processing of immature RNA precursors and degradation of unnecessary nucleic acids. However, it remains unclear how exonucleases digest nucleic acids to generate correct end products for next-step processing. Here we show how the exonuclease RNase T stops its trimming precisely. The crystal structures of RNase T in complex wit...
متن کاملStructural insights into RNA unwinding and degradation by RNase R
RNase R is a conserved exoribonuclease in the RNase II family that primarily participates in RNA decay in all kingdoms of life. RNase R degrades duplex RNA with a 3' overhang, suggesting that it has RNA unwinding activity in addition to its 3'-to-5' exoribonuclease activity. However, how RNase R coordinates RNA binding with unwinding to degrade RNA remains elusive. Here, we report the crystal s...
متن کاملFabrication of stable and RNase-resistant RNA nanoparticles active in gearing the nanomotors for viral DNA packaging.
Both DNA and RNA can serve as powerful building blocks for bottom-up fabrication of nanostructures. A pioneering concept proposed by Ned Seeman 30 years ago has led to an explosion of knowledge in DNA nanotechnology. RNA can be manipulated with simplicity characteristic of DNA, while possessing noncanonical base-pairing, versatile function, and catalytic activity similar to proteins. However, s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 25 7 شماره
صفحات -
تاریخ انتشار 1997